Monday, October 28, 2013

Chapter 2 Quiz: Grade 11


Q01: Write down Pascal’s law. Mention one of the uses of this law.
Pascal’s Law: When a fluid completely fills a vessel and a pressure is applied to it at any part of the surface, that pressure is transmitted equally throughout the whole of the enclosed fluid.
pin = pout,  Fin/Fout = Ain/Aout
pin = input pressure, pout = output pressure, Fin = input effort,
Fout = output load, Ain = area of intake piston, Aout = area of outlet piston
1)   Pascal’s law is very useful in practical applications.
2)   The constructions of hydraulic brakes and hydraulic presses are based on Pascal’s law.
3)   Hydraulic brakes are used in cars and other road vehicles.
4)   A hydraulic press is a very useful machine. It is used for baling jute and for shaping steel and metal sheets. It has numerous other uses, from the compression of soft metals into cups of varying shapes to the pressing of automobile bodies.
2Q02: “Although Pascal’s law is not a fundamental law, it is a very useful law for practical purposes.” Is this statement correct? Discuss.
1)   The statement is correct.
2)   Pascal’s law is very useful in practical applications.
3)   The constructions of hydraulic brakes and hydraulic presses are based on Pascal’s law.
4)   Hydraulic brakes are used in cars and other road vehicles.
5)   A hydraulic press is a very useful machine. It is used for baling jute and for shaping steel and metal sheets. It has numerous other uses, from the compression of soft metals into cups of varying shapes to the pressing of automobile bodies.
2Q03: Write down Archimedes’ principle.
2Q06: What will be the effect on the mercury column if the glass tube used has (a) a smaller internal diameter (b) a slightly bigger internal diameter?
1)   The height of mercury column depends only on the atmospheric pressure outside the tube.
2)   It does not depend on cross-sectional area.
3)   So there will be no effect for both cases.
4)   The mercury column will remain at 76 cm.
2Q07: Will the mercury column be higher or lower than 76 cm when the whole up of the barometer is taken to a high mountain top?
1)   Less,
2)   because the pressure of the surrounding air is less than that at sea level.
3)   This is because at greater heights air is thin.
2Q08: Why is mercury used in a barometer rather than water?
1)   The pressure exerted by the atmosphere is the same for water and mercury.
2)   pHg = pW      (Hg = mercury, w = water)
3)   rHg g hHg = rW g hW
4)   hw = (rHg hHg)/rw = 13.6 ´ 76 = 1033.6 cm = 10.336 m
5)   Density of mercury is much larger than that of water.
6)   If mercury is used only 76 cm (about 1 m) of tube is needed.
7)   If water is used 10.336 m (more than 10 m) of tube is needed.
8)   Water barometer is much longer than mercury barometer.
9)   Thus, mercury is used in a barometer rather than water.
2Q09(a): What is the effect on the vertical height of the mercury column in a barometer of using a wider glass tube?
1)   The vertical height of the mercury column in a barometer only depends on the atmospheric pressure outside the tube.
2)   The vertical height of the mercury is independent of the diameter or the width of the tube.
3)   The pressure in a liquid doesn’t depend on the container angle or width.
4)   Using a wider glass tube will not change the height of the mercury column.
5)   The height of the mercury column will remain at 760 mm.
2Q09(b): What is the effect on the vertical height of the mercury column in a barometer of pushing the tube further into the bowl?
1)   The vertical height of the mercury column in a barometer only depends on the atmospheric pressure outside the tube.
2)   Pushing the tube further into the bowl will not change the height of the mercury column as long as the vertical height of the mercury column exceeds 760 mm.
2Q09(c): What is the effect on the vertical height of the mercury column in a barometer of tilting the glass tube at an angle?
1)   The vertical height of the mercury column in a barometer only depends on the atmospheric pressure outside the tube.
2)   The vertical height of the mercury does not depend on the tilt of the column as long as the vertical height of the mercury column exceeds       760 mm.
2Q09(d): What is the effect on the vertical height of the mercury column in a barometer of taking the barometer to the top of the mountain?
1)   The vertical height of the mercury column in a barometer only depends on the atmospheric pressure outside the tube.
2)   The pressure at the top of the mountain is less than 760 mm Hg because the pressure of the surrounding air is less than that at sea level.
3)   This is because at greater heights air is thin.
4)   So the height of the mercury column will be lower than 760 mm.
2Q14: Give the approximate value of atmospheric pressure at sea level in       (i) Pa  (ii) mm Hg (iii) atm?
(a) 105 Pa (b) 760 mm Hg (c) 1 atm
2Q14: Explain why the thickness of the dam increases downwards.
1)   The thickness of the wall of the dam increases downwards because the deeper it is, the greater the water pressure.
2)   A thicker wall is required to withstand a greater pressure.
2Q15: A beaker containing water and placed on a pan is balanced by the weight which is in the other pan of the balance. Explain what will happen if a man immersed his finger in the water without touching the beaker.
1)   If a man immersed his finger in the water, there would be upward thrust on the finger.
2)   Some water has to be displaced for the finger according to the Archimedes’ principle.
3)   This displaced water will show unbalance of the balance.
2Q17: Steel will float in liquid (mercury) but sink in water. So how does a steel ship manage to float in water?
R     There is far more air in a ship than steel, (because a ship is hollow and contains air), so the average density of the ship is less than that of water.
2Q26: Why is it easier to float in the sea than in a swimming pool?
1)   The density of sea water is greater than that of fresh water.
2)   The upward thrust is directly proportional to the density of the liquid.    (Fup = rgV, Fup = upward thrust, r = density of liquid).
3)   The upward thrust of sea water is greater than that of the water in the swimming pool.
4)   Thus, it is easier to float in the sea than in a swimming pool.


Sunday, October 20, 2013

Grade 11 Physics Chapter 1: Quiz

Q01:    Define “power”
          The rate of doing work is defined as power.
Q02: Explain why power is a useful concept in practical works.
1)   Power is the rate of doing work. (P = W/ t)
2)   The greater the power, the more work it can do in a certain period of time.
3)   Car engines, water pumps, refrigerators, air conditioners and electric bulbs, fluorescent tubes, are classified according to their rated powers.
4)   Thus power is a useful concept in practical works.
Q03:    Which is more advantageous: to pay wages according to the amount of work done or according to power?
1)   Power can give only the rate of work done.
2)   The wage depends on amount of work done.
3)   To pay wages according to the amount of work done is more advantageous.
Q04:    Since power has only ...(1)... and no direction, it is a ..(2)... The SI unit for power is ..(3)... The powers of motors and engines are also expressed in ..(4).. which is a unit in British engineering system.
(1) magnitude        (2) scalar          (3) watt (W)     (4) horse power (hp)
Q05:    Fill in the blanks. Since power has only ...(1)... and no direction, it is a ..(2)... The SI unit for power is ..(3)... The powers of motors and engines are also expressed in ..(4).. which is a unit in British engineering system.
     (1) magnitude   (2) scalar    (3) watt (W)     (4) horse power (hp)
Q06:    Why is a high power machine used to do a lot of work quickly?
1)   P = W/ t, where P = power, W = work done, t = time
2)   If work is constant, P µ 1/t
3)   If time is small (quick), power must be large (high power).
Q07(a):           When a large power machine and a small power machine are operated for the same period of time, will the large power machine consume less fuel?
1)   No.
2)   P = W/ t, where P = power, W = work done, t = time
3)   If time is constant, µ W
4)   If power is large, work done is also large.
5)   To do a larger work, a larger energy or fuel is needed.
Q07(b): Can a lot of work be done only if a large power machine is used?
1)   No.
2)   P = W/ t, where P = power, W = work done, t = time
3)   If work is constant, P µ 1/t
4)   If power is small, time must be large.
5)   So a small power machine may be used for as long as necessary.
Q07(c):            A lot of work can be done by operating a small power machine for as long as necessary. Why?
1)   P = W/ t  where P = power, W = work done, t = time
2)   If work is constant, P µ 1/t
3)   If power is small, time must be large.


Friday, October 18, 2013

All Definitions for Grade 11 Physics

  1.       Work Done
  2.       Power
  3.       Watt
  4.       1 watt
  5.       Simple Machines
  6.       Hydraulic System
  7.       Lever
  8.       Machine
  9.       Mechanical Advantage (MA)
10.     Velocity Ratio (VR)
11.     Efficiency
12.     Input work
13.     Output work
14.     Perfect Machine
15.     Elasticity
16.     Elastic Limit
17.     Hooke’s Law
18.     Stress
19.     Strain
20.     Pressure
21.     pascal.
22.     Atmospheric pressure
23.     Barometer
24.     Torricellian vacuum
25.     Standard Atmospheric Pressure
26.     Sucking
27.     Syringe
28.     Manometer
29.     Buoyancy
30.     Archimedes’ Principle
31.     Hydrometer
32.     Pascal’s Law
33.     Heat Conduction
34.     Thermal conductivity
35.     Temperature Gradient
36.     Heat Current
37.     Heat Convection
38.     Heat Radiation
39.     The best absorber
40.     Black Body
41.     Total Emissive Power
42.     Stephan-Boltzmann’s Law
43.     Emissivity (e)
44.     Kinetic Theory of Gas
45.     Brownian motion
46.     Progressive Waves
47.     Stationary Waves
48.     Nodes
49.     Antinodes
50.     Amplitude
51.     Wavelength
52.     Longitudinal wave
53.     Oscillation
54.     Transverse wave
55.     Frequency
56.     Hertz
57.     Wave equation
58.     How a stationary wave is obtained
59.     Harmonics
60.     Fundamental or First Harmonic
61.     Forced motion
62.     Resonant frequency
63.     Beat
64.     Intensity of a Wave
65.     Diffraction
66.     Refraction
67.     Light
68.     Newton's Corpuscular Theory
69.     Huygens’ Wave Theory of Light
70.     Refraction of Light
71.     Incident ray
72.     Refracted ray
73.     Normal
74.     Angle of Incidence
75.     Angle of Refraction
76.     Principle of reversibility of light
77.     Laws of Reflection
78.     Laws of Refraction
79.     Snell’s Law
80.     Refractive Index
81.     Refractive index using Snell’s laws
82.     Absolute refractive index
83.     Critical angle
84.     Internal reflection
85.     Total Internal Reflection
86.     Prism
87.     Thin prism
88.     Angle of prism
89.     Angle of Deviation (D)
90.     Lateral displacement
91.     Light pipe
92.     Optical fibres
93.     Primary light colours
94.     Secondary light colours
95.     Spectrum
96.     Dispersion
97.     Lens
98.     Thin lens
99.     Converging or Convex lens
100.   Diverging or Concave lens
101.   Sign Convention for Radius of Curvature of Lens
102.   Real image
103.   Virtual image
104.   Principal Axis
105.   Centre of the Lens
106.   Principal Focus of a Convex Lens
107.   Focal Length
108.   Principal Focus of a Concave Lens
109.   Principal Rays for Lens
110.   Lens equation
111.   Lens Formula
112.   Lens-makers’ equation/formula
113.   Sign Convention for Lenses
114.   Magnification
115.   Dioptric power of lens (or) Power of Lens
116.   Unit power or Dioptre
117.   The Common Defects of Vision
118.   Longsightedness
119.   Longsightedness or Hyperopia
120.   Shortsightedness
121.   Shortsightedness or Myopia
122.   Near point of the eye
123.   Magnifying Glass (OR) Simple Microscope
124.   Magnifying Power
125.   Compound Microscope
126.   Telescope
127.   Terrestrial Telescope
128.   Binoculars
129.   coulomb
130.   Electric charge
131.   Coulomb’s Law
132.   Electric Field
133.   Electric Field Intensity
134.   Electric field intensity from Coulomb's law
135.   Electric Lines of Force
136.   Non Uniform Electric Field
137.   Uniform Electric Field
138.   Lightning conductor
139.   Electric potential energy
140.   Electric Potential
141.   Unit of electric potential
142.   1 volt
143.   volt
144.   Voltage
145.   Electric Potential Difference
146.   The Unit of Electric Potential Difference
147.   The Electric Potential due to a Point Charge
148.   Equipotential Surface
149.   Conductors
150.   Insulators
151.   Capacitor
152.   The Charge of the Capacitor
153.   The Potential Difference of the Capacitor
154.   Capacitance of a Capacitor
155.   1 farad (F)
156.   Electric capacity
157.   Surface Charge Density
158.   Dielectric Constant
159.   Capacitor in series
160.   Capacitor in parallel
161.   Electric Current
162.   Electron current
163.   Conventional current
164.   1 ampere
165.   ampere
166.   Ohm’s Law
167.   Resistance
168.   Resistance of a Conductor (using Ohm’s law)
169.   ohm
170.   The resistivity of the conductor
171.   Parallel circuit
172.   Series circuit
173.   Electromotive Force
174.   Unit of Electromotive Force
175.   Available Voltage
176.   Ammeter
177.   Voltmeter
178.   Series Aiding
179.   Series Opposing
180.   Electrical Energy
181.   Electrical Power
182.   kilowatt-hour
183.   Joule’s Law of Electricity and Heat
184.   Fuse
185.   Damaged insulation
186.   Overheating of cables
187.   Damp conditions
188.   Magnet
189.   Bar magnet
190.   Magnetic Field
191.   The Right Hand Rule
192.   Right-hand (wire) rule
193.   Solenoid
194.   Fleming’s Left-hand Rule
195.   Torque
196.   Couple
197.   Electromagnet
198.   Shunt
199.   Electromagnetic induction
200.   Induced current
201.   Faraday's Law of Electromagnetic Induction
202.   Magnetic Flux
203.   Lenz's Law
204.   Alternating currents
205.   Direct Current
206.   Transformer
207.   Thermionic Emission
208.   Diode Characteristics
209.   Triode Characteristics
210.   Semiconductors
211.   Positive Hole
212.   n-type semiconductor
213.   p-type semiconductor
214.   P-N Junction
215.   P-N Junction Diode
216.   Forward Biased
217.   Reverse Biased
218.   Rectifier
219.   Transistor
220.   The Advantages of Transistors
221.   pnp transistor
222.   npn transistor
223.   Electronic Circuit
224.   Logic Gates
225.   Demodulation
226.   Input device
227.   Output device
228.   Data Storage Device
229.   Operating System Software
230.   Application Software
231.   Atom
232.   Atomic mass
233.   Atomic mass number
234.   Mass number
235.   Atomic number
236.   Atomic mass unit (amu or u)
237.   Neutron number
238.   Neutron
239.   Nucleon
240.   Nucleus
241.   Nuclide
242.   Proton
243.   Proton number
244.   Decay (radioactive)
245.   Decay rate
246.   Decay time
247.   Isotopes
248.   Isomer
249.   Electron
250.   electron-volt (eV)
251.   Ion
252.   Ionizing radiation
253.   Irradiate
254.   MeV
255.   Neutrino
256.   Nuclear binding energy
257.   Radioactivity
258.   Radioactive Material
259.   Cathode Rays Tube
260.   CRO
261.   Electromagnetic radiation
262.   Cathode Rays
263.   The Properties of Cathode Rays
264.   X-rays
265.   x-radiation
266.   Production of x-rays in Laboratory
267.   Properties of X-rays
268.   Uses of X-rays
269.   Alpha Rays
270.   Alpha particle (alpha radiation, alpha ray)
271.   Properties of Alpha Rays
272.   Beta Rays
273.   Beta particle (beta radiation, beta ray)
274.   Properties of Beta Rays
275.   Gamma Rays
276.   Properties of Gamma Rays
277.   Activity
278.   becquerel (Bq)
279.   curie (Ci)
280.   Half-Life
281.   Tracers
282.   Detector
283.   Nuclear reactor
284.   Parent nuclide
286.   Photomultiplier
287.   Pion
288.   QCD
289.   QED
290.   Quark
291.   rad (Radiation Absorbed Dose)
292.   Radioactive dating
293.   Radioactive waste
294.   Radioisotope
295.   Radionuclide
296.   rem (röntgen equivalent man)
297.   Residual strong force
298.   röntgen or roentgen (R)
299.   Scaler
300.   Scintillation counter
301.   Scintillator
302.   Secular equilibrium
303.   Shielding
304.   sievert (Sv)
305.   Source
306.   Stable
307.   Standard Model
308.   Strong interactions
309.   Symmetry
310.   Thermal energy
311.   Transmutation
312.   Ultraviolet radiation
313.   Van de Graaff Accelerator
314.   Weak interaction
315.   Nuclear fission  and Chain Reaction
316.   Carbon dating
317.   Dating rocks
318.   Radiotherapy
319.   Uses of Tracers

320.   Energy and Mass